If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-10x-140=0
We add all the numbers together, and all the variables
x^2-8x-140=0
a = 1; b = -8; c = -140;
Δ = b2-4ac
Δ = -82-4·1·(-140)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{39}}{2*1}=\frac{8-4\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{39}}{2*1}=\frac{8+4\sqrt{39}}{2} $
| -4=v7 | | X+14=4x-14 | | 7a-24+4a=31 | | -4=v~7 | | 3^x=2 | | 56w-98=-266 | | 1/3g=9 | | 66=11v | | 0.7(3x-0.2)=0.3(0.8-2x) | | 3x=3x^2 | | 2x^2+29x-9.1=0 | | 5x-2+3x=5 | | 2+9x+5=3x-13+x | | -7(x+2)=-1 | | 4x+12=3+5x | | 34-5x+2(x•2)=15 | | 3y+7=180 | | 3=19x | | 34-5x+2(x+2)=15 | | (2x)^3=512 | | 3x=19x | | 8=1/3w | | 41/2+q=9/1/2 | | 3x+6=(.5)7x+1 | | 3x(7×x)=0 | | 23x+6x=29 | | 3m−5=1 | | (2x+8)^3/2=512 | | 21/3x+1/3x=1+12/3x | | x-(.3001x-1246101863)=7346729 | | 22+22+2x=60 | | 6+x+2= |